MB95220H Series

F^{2} MC-8FX 8-bit Microcontroller

MB95220H are a series of general-purpose, single-chip microcontrollers. In addition to a compact instruction set, the microcontrollers of these series contain a variety of peripheral resources.

Features

F 2 MC-8FX CPU core

Instruction set optimized for controllers

- Multiplication and division instructions

■ 16-bit arithmetic operations

- Bit test branch instructions

■ Bit manipulation instructions, etc.

Clock

■ Selectable main clock source
a External clock (up to 32.5 MHz , maximum machine clock frequency: 16.25 MHz)

- Main internal CR clock ($1 / 8 / 10 \mathrm{MHz} \pm 3 \%$, maximum machine clock frequency: 10 MHz)
■ Selectable subclock source
- External clock (32.768 kHz)
- Sub-internal CR clock (Typ: 100 kHz, Min: 50 kHz, Max: 200 kHz)

Timer
■ 8/16-bit composite timer

- Timebase timer

■ Watch prescaler

LIN-UART (MB95F222H/F222K/F223H/F223K)

■ Full duplex double buffer
■ Capable of clock-synchronized serial data transfer and clock-asynchronized serial data transfer

External interrupt

- Interrupt by edge detection (rising edge, falling edge, and both edges can be selected)

■ Can be used to wake up the device from different low power consumption (standby) modes

8/10-bit A/D converter

■ 8-bit or 10-bit resolution can be selected.
Low power consumption (standby) modes
■ Stop mode

- Sleep mode
- Watch mode
- Timebase timer mode

I/O port (Max: 13) (MB95F222K/F223K)
■ General-purpose I/O ports (Max):
CMOS I/O: 11, N-ch open drain: 2
I/O port (Max: 12) (MB95F222H/F223H)
■ General-purpose I/O ports (Max): CMOS I/O: 11, N-ch open drain: 1

On-chip debug

- 1-wire serial control

■ Serial writing supported (asynchronous mode)

Hardware/software watchdog timer

- Built-in hardware watchdog timer

Low-voltage detection reset circuit
■ Built-in low-voltage detector
Clock supervisor counter

- Built-in clock supervisor counter function

Programmable port input voltage level
■ CMOS input level / hysteresis input level
Flash memory security function

- Protects the contents of flash memory

Contents

Product Line-up 3
Packages and Corresponding Products 5
Differences Among Products and Notes on Product Selection 5
Pin Assignment 6
Pin Description (MB95220H Series) 7
I/O Circuit Type 9
Notes on Device Handling 11
Pin Connection 11
Block Diagram (MB95220H Series) 13
CPU Core 14
I/O Map (MB95220H Series) 15
Interrupt Source Table (MB95220H Series) 19
Electrical Characteristics 20
Absolute Maximum Ratings 20
Recommended Operating Conditions 22
DC Characteristics 23
AC Characteristics 26
A/D Converter 42
Flash Memory Program/Erase Characteristics 46
Sample Electrical Characteristics 47
Mask Options 53
Ordering Information 53
Package Dimensions 54
Main Changes 56
Document History 57

1. Product Line-up

Part number	MB95F223H	MB95F222H	MB95F223K	MB95F222K
Type	Flash memory product			
Clock supervisor counter	It supervises the main clock oscillation.			
ROM capacity	8 KB	4 KB	8 KB	4 KB
RAM capacity	496 B	240 B	496 B	240 B
Low-voltage detection reset	No		Yes	
Reset input	Dedicated		Selected by software	
CPU functions	Number of basic instructions $: 136$ Instruction bit length $: 8$ bits Instruction length $: 1$ to 3 bytes Data bit length $: 1,8$ and 16 bits Minimum instruction execution time $: 61.5 \mathrm{~ns}$ (with machine clock $=16.25 \mathrm{MHz}$) Interrupt processing time $: 0.6 \mu \mathrm{~s}$ (with machine clock $=16.25 \mathrm{MHz}$)			
General-purpose I/O	I/O ports (Max): 12 CMOS: 11, N-ch: 1		I/O ports (Max): 13 CMOS: 11, N-ch: 2	
Timebase timer	Interrupt cycle : $0.256 \mathrm{~ms}-8.3 \mathrm{~s}$ (when external clock $=4 \mathrm{MHz}$)			
Hardware/software watchdog timer	Reset generation cycle Main oscillation clock at 10 MHz : 105 ms (Min) The sub-CR clock can be used as the source clock of the hardware watchdog timer.			
Wild register	It can be used to replace three bytes of data.			
LIN-UART	A wide range of communication speed can be selected by a dedicated reload timer. It has a full duplex double buffer. Clock-synchronized serial data transfer and clock-asynchronized serial data transfer is enabled. The LIN function can be used as a LIN master or a LIN slave.			
8/10-bit A/D	5 ch .			
converter	8 -bit or 10-bit resolution can be selected.			
	1 ch .			
8/16-bit composite timer	The timer can be configured as an " 8 -bit timer $\times 2$ channels" or a " 16 -bit timer $\times 1$ channel". It has built-in timer function, PWC function, PWM function and input capture function. Count clock: it can be selected from internal clocks (seven types) and external clocks. It can output square wave.			
	6 ch.			
interrupt	Interrupt by edge detection (The rising edge, falling edge, or both edges can be selected.) It can be used to wake up the device from standby modes.			
On-chip debug	1-wire serial control It supports serial writing. (asynchronous mode)			

(Continued)
(Continued)

	MB95F223H	MB95F222H	MB95F223K	MB95F222K
Watch prescaler	Eight different time intervals can be selected.			
Flash memory	It supports automatic programming, Embedded Algorithm, write/erase/erase-suspend/erase-resume commands. It has a flag indicating the completion of the operation of Embedded Algorithm. Number of write/erase cycles: 100000 Data retention time: 20 years For write/erase, external $\mathrm{Vpp}(+10 \mathrm{~V})$ input is required. Flash security feature for protecting the contents of the flash			
Standby mode	Sleep mode, stop mode, watch mode, timebase timer mode			
Package	$\begin{aligned} & \text { DIP-16P-M06 } \\ & \text { FPT-16P-M06 } \end{aligned}$			

2. Packages and Corresponding Products

Part number	MB95F223H	MB95F222H	MB95F223K	MB95F222K
Package				
DIP-16P-M06	O	O	O	O
FPT-16P-M06	O	O	O	O

O: Available

3. Differences Among Products and Notes on Product Selection

Current consumption

When using the on-chip debug function, take account of the current consumption of flash erase/program.
For details of current consumption, see "13. Electrical Characteristics".

Package

For details of information on each package, see "2. Packages and Corresponding Products" and "17. Package Dimensions".

Operating voltage

The operating voltage varies, depending on whether the on-chip debug function is used or not.
For details of the operating voltage, see "13. Electrical Characteristics".

On-chip debug function

The on-chip debug function requires that $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{SS}}$ and 1 serial-wire be connected to an evaluation tool. In addition, if the flash memory data has to be updated, the RST/PF2 pin must also be connected to the same evaluation tool.

MB95220H Series

4. Pin Assignment

5. Pin Description (MB95220H Series)

Pin $n o$.	Pin name	$\begin{aligned} & \text { I/O } \\ & \text { circuit } \\ & \text { type* } \end{aligned}$ type*	Function
1	PF0	B	General-purpose I/O port
	X0		Main clock input oscillation pin
2	PF1	B	General-purpose I/O port
	X1		Main clock I/O oscillation pin
3	$V_{\text {SS }}$	-	Power supply pin (GND)
4	PG2	C	General-purpose I/O port
	X1A		Subclock I/O oscillation pin
5	PG1	C	General-purpose I/O port
	X0A		Subclock input oscillation pin
6	V_{CC}	-	Power supply pin
7	PF2	A	General-purpose I/O port
	$\overline{\mathrm{RST}}$		Reset pin This pin is a dedicated reset pin in MB95F222H/F223H.
8	C	-	Capacitor connection pin
9	P02	E	General-purpose I/O port
	INT02		External interrupt input pin
	AN02		A/D converter analog input pin
	SCK		LIN-UART clock I/O pin
10	P01	E	General-purpose I/O port
	AN01		A/D converter analog input pin
11	P03	E	General-purpose I/O port
	INT03		External interrupt input pin
	AN03		A/D converter analog input pin
	SOT		LIN-UART data output pin
12	P04	F	General-purpose I/O port
	INT04		External interrupt input pin
	AN04		A/D converter analog input pin
	SIN		LIN-UART data input pin
	HCLK1		External clock input pin
	ECO		8/16-bit composite timer ch. 0 clock input pin

(Continued)
(Continued)

Pin no.	Pin name	1/0 circuit type*	Function
13	P05	E	General-purpose I/O port High-current port
	INT05		External interrupt input pin
	AN05		A/D converter analog input pin
	TO00		8/16-bit composite timer ch. 0 clock input pin
	HCLK2		External clock input pin
14	P06	G	General-purpose I/O port High-current port
	INT06		External interrupt input pin
	TO01		8/16-bit composite timer ch. 0 clock input pin
15	P07	G	General-purpose I/O port
	INT07		External interrupt input pin
16	P12	H	General-purpose I/O port
	EC0		8/16-bit composite timer ch. 0 clock input pin
	DBG		DBG input pin

*: For the I/O circuit types, see "6. I/O Circuit Type".

6. I/O Circuit Type

Type	Circuit	Remarks
A		- N-ch open drain output - Hysteresis input - Reset output
B		- Oscillation circuit - High-speed side Feedback resistance: approx. $1 \mathrm{M} \Omega$ - CMOS output - Hysteresis input
C		- Oscillation circuit - Low-speed side Feedback resistance: approx. $10 \mathrm{M} \Omega$ - CMOS output - Hysteresis input - Pull-up control available

(Continued)

Type	Circuit	Remarks
D		- CMOS output - Hysteresis input
E		- CMOS output - Hysteresis input - Pull-up control available
F		- CMOS output - Hysteresis input - CMOS input - Pull-up control available
G		- Hysteresis input - CMOS output - Pull-up control available
H		- N-ch open drain output - Hysteresis input

7. Notes on Device Handling

Preventing latch-ups

When using the device, ensure that the voltage applied does not exceed the maximum voltage rating.
In a CMOS IC, if a voltage higher than $V_{C C}$ or a voltage lower than $V_{S S}$ is applied to an input/output pin that is neither a medium-withstand voltage pin nor a high-withstand voltage pin, or if a voltage out of the rating range of power supply voltage mentioned in 13.1 Absolute Maximum Ratings of "Electrical Characteristics" is applied to the V_{CC} pin or the V_{SS} pin, a latch-up may occur.
When a latch-up occurs, power supply current increases significantly, which may cause a component to be thermally destroyed.

Stabilizing supply voltage

Supply voltage must be stabilized.
A malfunction may occur when power supply voltage fluctuates rapidly even though the fluctuation is within the guaranteed operating range of the V_{CC} power supply voltage.
As a rule of voltage stabilization, suppress voltage fluctuation so that the fluctuation in $V_{c c}$ ripple ($p-p$ value) at the commercial frequency ($50 \mathrm{~Hz} / 60 \mathrm{~Hz}$) does not exceed 10% of the standard V_{CC} value, and the transient fluctuation rate does not exceed $0.1 \mathrm{~V} / \mathrm{ms}$ at a momentary fluctuation such as switching the power supply.

Notes on using the external clock

When an external clock is used, oscillation stabilization wait time is required for power-on reset, wake-up from subclock mode or stop mode.

8. Pin Connection

Treatment of unused pins

If an unused input pin is left unconnected, a component may be permanently damaged due to malfunctions or latch-ups. Always pull up or pull down an unused input pin through a resistor of at least $2 \mathrm{k} \Omega$. Set an unused input/output pin to the output state and leave it unconnected, or set it to the input state and treat it the same as an unused input pin. If there is an unused output pin, leave it unconnected.

Power supply pins

To reduce unnecessary electro-magnetic emission, prevent malfunctions of strobe signals due to an increase in the ground level, and conform to the total output current standard, always connect the $V_{C C}$ pin and the $V_{S S}$ pin to the power supply and ground outside the device. In addition, connect the current supply source to the $V_{C C}$ pin and the $V_{S S}$ pin with low impedance.
It is also advisable to connect a ceramic capacitor of approximately $0.1 \mu \mathrm{~F}$ as a bypass capacitor between the V_{CC} pin and the V_{SS} pin at a location close to this device.

DBG pin

Connect the DBG pin directly to an external pull-up resistor.
To prevent the device from unintentionally entering the debug mode due to noise, minimize the distance between the DBG pin and the V_{CC} or V_{SS} pin when designing the layout of the printed circuit board.
The DBG pin should not stay at "L" level after power-on until the reset output is released.

$\overline{\text { RST }}$ pin

Connect the $\overline{\text { RST }}$ pin directly to an external pull-up resistor.
To prevent the device from unintentionally entering the reset mode due to noise, minimize the distance between the $\overline{\text { RST }}$ pin and the $V_{C C}$ or $V_{S S}$ pin when designing the layout of the printed circuit board.
The $\overline{\operatorname{RST}} / \mathrm{PF} 2$ pin functions as the reset input/output pin after power-on. In addition, the reset output of the $\overline{\mathrm{RST}} / \mathrm{PF} 2$ pin can be enabled by the RSTOE bit of the SYSC register, and the reset input function and the general purpose I/O function can be selected by the RSTEN bit of the SYSC register.

MB95220H Series

C pin

Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. The bypass capacitor for the V_{Cc} pin must have a capacitance larger than C_{S}. For the connection to a smoothing capacitor C_{S}, see the diagram below. To prevent the device from unintentionally entering a mode to which the device is not set to transit due to noise, minimize the distance between the C pin and C_{S} and the distance between C_{S} and the V_{SS} pin when designing the layout of a printed circuit board.

DBG/RST/C pin connection diagram

9. Block Diagram (MB95220H Series)

10. CPU Core

Memory Space

The memory space of the MB95220H Series is 64 KB in size, and consists of an I/O area, a data area, and a program area. The memory space includes areas intended for specific purposes such as general-purpose registers and a vector table. The memory maps of the MB95220H Series are shown below.

Memory Maps

11. I/O Map (MB95220H Series)

Address	Register abbreviation	Register name	R/W	Initial value
$0^{0000}{ }_{H}$	PDR0	Port 0 data register	R/W	$00000000{ }_{B}$
$0^{0001}{ }_{H}$	DDR0	Port 0 direction register	R/W	00000000_{B}
$0^{0002}{ }_{H}$	PDR1	Port 1 data register	R/W	$00000000{ }_{B}$
$0^{0003}{ }_{\text {H }}$	DDR1	Port 1 direction register	R/W	00000000_{B}
$0^{0004}{ }_{H}$	-	(Disabled)	-	-
$0^{0005}{ }_{\text {H }}$	WATR	Oscillation stabilization wait time setting register	R/W	$11111111^{\text {B }}$
$0^{0006}{ }_{H}$	-	(Disabled)	-	-
$0^{0007}{ }_{H}$	SYCC	System clock control register	R/W	$0000 \times 011_{\text {B }}$
$0^{0008}{ }_{\text {H }}$	STBC	Standby control register	R/W	$00000 \times X X_{\text {B }}$
$0^{0009}{ }_{\text {H }}$	RSRR	Reset source register	R	XXXXXXXX ${ }_{\text {B }}$
$000 \mathrm{~A}_{\mathrm{H}}$	TBTC	Timebase timer control register	R/W	00000000_{B}
$000 \mathrm{~B}_{\mathrm{H}}$	WPCR	Watch prescaler control register	R/W	$00000000{ }_{\text {B }}$
$000 \mathrm{C}_{\mathrm{H}}$	WDTC	Watchdog timer control register	R/W	$00000000_{\text {B }}$
$000 \mathrm{D}_{\mathrm{H}}$	SYCC2	System clock control register 2	R/W	XX100011 ${ }_{\text {B }}$
$\begin{gathered} 000 \mathrm{E}_{\mathrm{H}} \text { to } \\ 0015_{\mathrm{H}} \end{gathered}$	-	(Disabled)	-	-
$0^{0016}{ }_{\text {H }}$	-	(Disabled)	-	-
0017_{H}	-	(Disabled)	-	-
$\begin{gathered} 0018_{\mathrm{H}} \text { to } \\ 0027_{\mathrm{H}} \end{gathered}$	-	(Disabled)	-	-
$0^{0028}{ }_{\text {H }}$	PDRF	Port F data register	R/W	$00000000_{\text {B }}$
$0^{0029}{ }_{\text {H }}$	DDRF	Port F direction register	R/W	$00000000{ }_{B}$
$002 \mathrm{~A}_{\mathrm{H}}$	PDRG	Port G data register	R/W	$00000000{ }_{B}$
$002 \mathrm{~B}_{\mathrm{H}}$	DDRG	Port G direction register	R/W	00000000_{B}
002C ${ }_{H}$	PUL0	Port 0 pull-up register	R/W	$00000000_{\text {B }}$
$\begin{gathered} 002 \mathrm{D}_{\mathrm{H}} \text { to } \\ 0034_{\mathrm{H}} \end{gathered}$	-	(Disabled)	-	-
$0^{0035}{ }_{\text {H }}$	PULG	Port G pull-up register	R/W	$00000000{ }_{B}$
$0^{0036}{ }_{H}$	T01CR1	8/16-bit composite timer 01 status control register 1 ch. 0	R/W	00000000_{B}
$0037{ }_{\text {H }}$	T00CR1	8/16-bit composite timer 00 status control register 1 ch. 0	R/W	00000000 ${ }_{\text {B }}$
$0^{0038}{ }_{\text {H }}$	-	(Disabled)	-	-
0039 ${ }_{\text {H }}$	-	(Disabled)	-	-
$\begin{gathered} 003 \mathrm{~A}_{\mathrm{H}} \text { to } \\ 0048_{\mathrm{H}} \end{gathered}$	-	(Disabled)	-	-
0049 ${ }_{\text {H }}$	EIC10	External interrupt circuit control register ch. 2/ch. 3	R/W	$00000000{ }_{\text {B }}$

(Continued)

Address	Register abbreviation	Register name	R/W	Initial value
$004 \mathrm{~A}_{\mathrm{H}}$	EIC20	External interrupt circuit control register ch. 4/ch. 5	R/W	00000000_{B}
$004 \mathrm{~B}_{\mathrm{H}}$	EIC30	External interrupt circuit control register ch. 6/ch. 7	R/W	$00000000{ }_{B}$
$\begin{gathered} 004 \mathrm{C}_{\mathrm{H}} \text { to } \\ 004 \mathrm{~F}_{\mathrm{H}} \end{gathered}$	-	(Disabled)	-	-
$0^{0050}{ }_{\text {H }}$	SCR	LIN-UART serial control register	R/W	00000000_{B}
$0051{ }_{\text {H }}$	SMR	LIN-UART serial mode register	R/W	00000000_{B}
$0^{0052}{ }_{H}$	SSR	LIN-UART serial status register	R/W	00001000_{B}
$0053{ }_{\text {H }}$	RDR/TDR	LIN-UART receive/transmit data register	R/W	00000000_{B}
$0^{0054}{ }_{\text {H }}$	ESCR	LIN-UART extended status control register	R/W	00000100_{B}
$0^{0055}{ }_{\text {H }}$	ECCR	LIN-UART extended communication control register	R/W	$000000 \times X_{B}$
$\begin{gathered} 0056_{\mathrm{H}} \text { to } \\ 006 \mathrm{~B}_{\mathrm{H}} \end{gathered}$	-	(Disabled)	-	-
$006 \mathrm{C}_{\mathrm{H}}$	ADC1	8/10-bit A/D converter control register 1	R/W	00000000_{B}
$006 \mathrm{D}_{\mathrm{H}}$	ADC2	8/10-bit A/D converter control register 2	R/W	00000000_{B}
$006 \mathrm{E}_{\mathrm{H}}$	ADDH	8/10-bit A/D converter data register (Upper)	R/W	00000000_{B}
$006 \mathrm{~F}_{\mathrm{H}}$	ADDL	8/10-bit A/D converter data register (Lower)	R/W	$00000000{ }_{\text {B }}$
$\begin{gathered} 0070_{\mathrm{H}}, \\ 0071_{\mathrm{H}} \end{gathered}$	-	(Disabled)	-	-
0072 ${ }_{\text {H }}$	FSR	Flash memory status register	R/W	$000 \times 0000_{\text {B }}$
$\begin{gathered} 0073_{\mathrm{H}} \text { to } \\ 0075_{\mathrm{H}} \end{gathered}$	-	(Disabled)	-	-
$0^{0076}{ }_{\text {H }}$	WREN	Wild register address compare enable register	R/W	00000000_{B}
$0077{ }_{H}$	WROR	Wild register data test setting register	R/W	$00000000{ }_{B}$
$0^{0078}{ }_{H}$	-	Mirror of register bank pointer (RP) and direct bank pointer (DP)	-	-
0079 ${ }_{\text {H }}$	ILR0	Interrupt level setting register 0	R/W	11111111_{B}
$007 \mathrm{~A}_{\mathrm{H}}$	ILR1	Interrupt level setting register 1	R/W	$11111111^{\text {B }}$
$007 \mathrm{~B}_{\mathrm{H}}$	ILR2	Interrupt level setting register 2	R/W	$11111111^{\text {B }}$
$007 \mathrm{C}_{\mathrm{H}}$	-	(Disabled)	-	-
$007 \mathrm{D}_{\mathrm{H}}$	ILR4	Interrupt level setting register 4	R/W	11111111_{B}
$007 \mathrm{E}_{\mathrm{H}}$	ILR5	Interrupt level setting register 5	R/W	$11111111^{\text {B }}$
$007 \mathrm{~F}_{\mathrm{H}}$	-	(Disabled)	-	-
$\mathrm{OF}^{\text {8 }}{ }_{\mathrm{H}}$	WRARH0	Wild register address setting register (Upper) ch. 0	R/W	00000000_{B}

(Continued)

Address	Register abbreviation	Register name	R/W	Initial value
0F81 ${ }_{\text {H }}$	WRARLO	Wild register address setting register (Lower) ch. 0	R/W	00000000_{B}
0F82 ${ }_{\text {H }}$	WRDR0	Wild register data setting register ch. 0	R/W	00000000_{B}
$0 \mathrm{~F} 83_{\mathrm{H}}$	WRARH1	Wild register address setting register (Upper) ch. 1	R/W	00000000_{B}
$0 \mathrm{~F} 84_{\mathrm{H}}$	WRARL1	Wild register address setting register (Lower) ch. 1	R/W	00000000_{B}
$\mathrm{0F85}_{\mathrm{H}}$	WRDR1	Wild register data setting register ch. 1	R/W	00000000_{B}
0F86 ${ }_{\text {H }}$	WRARH2	Wild register address setting register (Upper) ch. 2	R/W	00000000_{B}
$0^{\text {0F87 }}$ H	WRARL2	Wild register address setting register (Lower) ch. 2	R/W	00000000_{B}
$\mathrm{0F88}_{\mathrm{H}}$	WRDR2	Wild register data setting register ch. 2	R/W	00000000_{B}
$\begin{gathered} \text { 0F89 }_{\mathrm{H}} \text { to } \\ \text { 0F91 }_{\mathrm{H}} \end{gathered}$	-	(Disabled)	-	-
0F92H	T01CR0	8/16-bit composite timer 01 status control register 0 ch. 0	R/W	00000000_{B}
$0 \mathrm{~F} 93{ }_{\mathrm{H}}$	T00CR0	8/16-bit composite timer 00 status control register 0 ch. 0	R/W	00000000_{B}
$\mathrm{OF}^{\text {9 }}{ }_{\mathrm{H}}$	T01DR	8/16-bit composite timer 01 data register ch. 0	R/W	00000000_{B}
$0^{0 F 95}{ }_{H}$	T00DR	8/16-bit composite timer 00 data register ch. 0	R/W	00000000_{B}
$0^{0 F 96}{ }_{\text {H }}$	TMCR0	8/16-bit composite timer 00/01 timer mode control register ch. 0	R/W	00000000_{B}
$\mathrm{OF}^{\text {97 }}$ H	-	(Disabled)	-	-
$\mathrm{0F98}_{\mathrm{H}}$	-	(Disabled)	-	-
0F99 ${ }_{\text {H }}$	-	(Disabled)	-	-
$0 \mathrm{~F} 9 \mathrm{~A}_{\mathrm{H}}$	-	(Disabled)	-	-
$\mathrm{OF9B}_{\mathrm{H}}$	-	(Disabled)	-	-
$\begin{gathered} \mathrm{OF9C}_{\mathrm{H}} \text { to } \\ 0^{\mathrm{FBB}}{ }_{\mathrm{H}} \end{gathered}$	-	(Disabled)	-	-
0 FBC H	BGR1	LIN-UART baud rate generator register 1	R/W	$00000000{ }_{\text {B }}$
0 FBD H	BGR0	LIN-UART baud rate generator register 0	R/W	00000000_{B}
$\begin{gathered} \mathrm{OFBE}_{\mathrm{H}} \text { to } \\ 0 \mathrm{FC} 2_{\mathrm{H}} \end{gathered}$	-	(Disabled)	-	-
$\mathrm{OFC3}_{\mathrm{H}}$	AIDRL	A/D input disable register (Lower)	R/W	00000000_{B}
$\begin{gathered} \mathrm{OFC}_{\mathrm{H}} \text { to } \\ \mathrm{OFE}_{\mathrm{H}} \end{gathered}$	-	(Disabled)	-	-
$\mathrm{OFE}_{4}{ }_{\mathrm{H}}$	CRTH	Main CR clock trimming register (Upper)	R/W	$1 \times X X X X X X_{B}$
$\mathrm{OFE5}_{\mathrm{H}}$	CRTL	Main CR clock trimming register (Lower)	R/W	$000 X X X X X_{B}$

(Continued)

MB95220H Series
(Continued)

Address	Register abbreviation	Register name	R/W	Initial value
$\begin{aligned} & \text { OFE6 }_{\mathrm{H}}, \\ & \mathrm{OFE7}_{\mathrm{H}} \end{aligned}$	-	(Disabled)	-	-
0FE8 ${ }_{\text {H }}$	SYSC	System configuration register	R/W	11000011_{B}
$\mathrm{OFE9}_{\mathrm{H}}$	CMCR	Clock monitoring control register	R/W	00000000_{B}
$0 \mathrm{FEA}_{\mathrm{H}}$	CMDR	Clock monitoring data register	R/W	00000000_{B}
0 FEB H	WDTH	Watchdog timer selection ID register (Upper)	R/W	XXXXXXXX ${ }_{\text {B }}$
0 FEC H	WDTL	Watchdog timer selection ID register (Lower)	R/W	X \times XXXXXX ${ }_{\text {B }}$
$0 \mathrm{FED}_{\mathrm{H}}$	-	(Disabled)	-	-
$0 \mathrm{FEE} \mathrm{H}_{\mathrm{H}}$	ILSR	Input level select register	R/W	00000000_{B}
$\begin{aligned} & \text { OFEF }_{H} \text { to } \\ & 0 F F F_{H} \end{aligned}$	-	(Disabled)	-	-

R/W access symbols

R/W	: Readable / Writable
R	: Read only
W	: Write only

Initial value symbols

$0 \quad$: The initial value of this bit is " 0 ".
1 : The initial value of this bit is " 1 ".
$X \quad:$ The initial value of this bit is undefined.

Note: Do not write to an address that is "(Disabled)". If a "(Disabled)" address is read, an undefined value is returned.

MB95220H Series
12. Interrupt Source Table (MB95220H Series)

Interrupt source	Interrupt request number	Vector table address		Bit name of interrupt level setting register	Priority order of interrupt sources of the same level (occurring simultaneously)
		Upper	Lower		
External interrupt ch. 4	IRQ0	$\mathrm{FFFA}_{\mathrm{H}}$	$\mathrm{FFFB}_{\mathrm{H}}$	L00 [1:0]	High
External interrupt ch. 5	IRQ1	$\mathrm{FFF8}_{\mathrm{H}}$	$\mathrm{FFF9}_{\mathrm{H}}$	L01 [1:0]	
External interrupt ch. 2	IRQ2	$\mathrm{FFF6}_{\mathrm{H}}$	$\mathrm{FFF}^{\text {H }}$	L02 [1:0]	Δ
External interrupt ch. 6					
External interrupt ch. 3	IRQ3	FFF4 ${ }_{\mathrm{H}}$	$\mathrm{FFF5}_{\mathrm{H}}$	L03 [1:0]	
External interrupt ch. 7					
-	IRQ4	FFF2 ${ }_{\text {H }}$	$\mathrm{FFF}^{\text {H }}$	L04 [1:0]	
8/16-bit composite timer ch. 0 (Lower)	IRQ5	$\mathrm{FFFO}_{\mathrm{H}}$	FFF1 ${ }_{\text {H }}$	L05 [1:0]	
8/16-bit composite timer ch. 0 (Upper)	IRQ6	$\mathrm{FFEE}_{\mathrm{H}}$	$\mathrm{FFEF}_{\mathrm{H}}$	L06 [1:0]	
LIN-UART (reception)	IRQ7	$\mathrm{FFEC}_{\mathrm{H}}$	$\mathrm{FFED}_{\mathrm{H}}$	L07 [1:0]	
LIN-UART (transmission)	IRQ8	$\mathrm{FFEA}_{\mathrm{H}}$	$\mathrm{FFEB}_{\mathrm{H}}$	L08 [1:0]	
-	IRQ9	$\mathrm{FFE8}_{\mathrm{H}}$	$\mathrm{FFE}_{\mathrm{H}}$	L09 [1:0]	
-	IRQ10	FFE6 ${ }_{\text {H }}$	$\mathrm{FFE7}_{\mathrm{H}}$	L10 [1:0]	
-	IRQ11	$\mathrm{FFE}^{\text {H }}$	$\mathrm{FFE}_{\mathrm{H}}$	L11 [1:0]	
-	IRQ12	$\mathrm{FFE}^{\text {H }}$	$\mathrm{FFE}^{\mathrm{H}}$	L12 [1:0]	
-	IRQ13	$\mathrm{FFEO}_{\mathrm{H}}$	$\mathrm{FFE}^{\text {H }}$	L13 [1:0]	
-	IRQ14	$\mathrm{FFDE}_{\mathrm{H}}$	$\mathrm{FFDF}_{\mathrm{H}}$	L14 [1:0]	
-	IRQ15	$\mathrm{FFDC}_{\mathrm{H}}$	$\mathrm{FFDD}_{\mathrm{H}}$	L15 [1:0]	
-	IRQ16	$\mathrm{FFDA}_{\mathrm{H}}$	$\mathrm{FFDB}_{\mathrm{H}}$	L16 [1:0]	
-	IRQ17	$\mathrm{FFD8}_{\mathrm{H}}$	$\mathrm{FFD9}_{\mathrm{H}}$	L17 [1:0]	
8/10-bit A/D converter	IRQ18	$\mathrm{FFD6}_{\mathrm{H}}$	$\mathrm{FFD7}_{\mathrm{H}}$	L18 [1:0]	
Timebase timer	IRQ19	$\mathrm{FFD}^{\text {H }}$	$\mathrm{FFD}^{\mathrm{H}}$	L19 [1:0]	
Watch prescaler	IRQ20	$\mathrm{FFD}^{\mathrm{H}}$	$\mathrm{FFD}_{\mathrm{H}}$	L20 [1:0]	
-	IRQ21	$\mathrm{FFDO}_{\mathrm{H}}$	$\mathrm{FFD1}_{\mathrm{H}}$	L21 [1:0]	
-	IRQ22	$\mathrm{FFCE}_{\mathrm{H}}$	$\mathrm{FFCF}_{\mathrm{H}}$	L22 [1:0]	∇
Flash memory	IRQ23	$\mathrm{FFCC}_{\mathrm{H}}$	$\mathrm{FFCD}_{\mathrm{H}}$	L23 [1:0]	Low

13. Electrical Characteristics

13.1 Absolute Maximum Ratings

Parameter	Symbol	Rating		Unit	Remarks
		Min	Max		
Power supply voltage*1	V_{CC}	$\mathrm{V}_{\text {SS }} 0.3$	$\mathrm{V}_{S S}+6$	V	
Input voltage*1	V_{11}	$\mathrm{V}_{\text {SS }}-0.3$	$\mathrm{V}_{\mathrm{CC}}+0.3$	V	Other than PF2*2
	V_{12}	$\mathrm{V}_{\text {SS }}-0.3$	10.5	V	PF2
Output voltage*1	V_{O}	$\mathrm{V}_{\text {SS }}-0.3$	$\mathrm{V}_{\mathrm{SS}}+6$	V	*2
Maximum clamp current	$\mathrm{I}_{\text {CLAMP }}$	-2	+2	mA	Applicable to specific pins ${ }^{* 3}$
Total maximum clamp current	S IICLAMP	-	20	mA	Applicable to specific pins ${ }^{*}$
"L" level maximum output current	$\mathrm{l}_{\mathrm{OL} 1}$	-	15	mA	Other than P05, P06
	$\mathrm{I}_{\text {OL2 }}$		15		P05, P06
" L " level average current	Iolav1	-	4	mA	Other than P05, P06 Average output current $=$ operating current \times operating ratio (1 pin)
	IoLAV2		12		P05, P06 Average output current $=$ operating current \times operating ratio (1 pin)
" L " level total maximum output current	$\mathrm{SI}_{\mathrm{OL}}$	-	100	mA	
"L" level total average output current	SIoLAV	-	50	mA	Total average output current = operating current \times operating ratio (Total number of pins)
"H" level maximum output current	$\mathrm{l}_{\mathrm{OH} 1}$	-	-15	mA	Other than P05, P06
	$\mathrm{l}_{\mathrm{OH} 2}$		-15		P05, P06
" H " level average current	$\mathrm{I}_{\text {OHAV1 }}$	-	-4	mA	Other than P05, P06 Average output current $=$ operating current \times operating ratio (1 pin)
	IOHAV2		-8		P05, P06 Average output current $=$ operating current \times operating ratio (1 pin)
" H " level total maximum output current	$\mathrm{SI}_{\mathrm{OH}}$	-	-100	mA	
" H " level total average output current	$\mathrm{SI}_{\text {OHAV }}$	-	-50	mA	Total average output current = operating current \times operating ratio (Total number of pins)
Power consumption	Pd	-	320	mW	
Operating temperature	T_{A}	-40	+85	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55	+ 150	${ }^{\circ} \mathrm{C}$	

(Continued)

(Continued)

*1: The parameter is based on $\mathrm{V}_{\mathrm{SS}}=0.0 \mathrm{~V}$.
*2: V_{I} and V_{O} must not exceed $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$. V_{I} must not exceed the rated voltage. However, if the maximum current to/from an input is limited by means of an external component, the $I_{\text {CLAMP }}$ rating is used instead of the V_{I} rating.
*3: Applicable to the following pins: P01 to P07, PG1, PG2, PF0, PF1

- Use under recommended operating conditions.
- Use with DC voltage (current).
- The HV (High Voltage) signal is an input signal exceeding the V_{CC} voltage. Always connect a limiting resistor between the HV (High Voltage) signal and the microcontroller before applying the HV (High Voltage) signal.
- The value of the limiting resistor should be set to a value at which the current to be input to the microcontroller pin when the HV (High Voltage) signal is input is below the standard value, irrespective of whether the current is transient current or stationary current.
- When the microcontroller drive current is low, such as in low power consumption modes, the HV (High Voltage) input potential may pass through the protective diode to increase the potential of the V_{CC} pin, affecting other devices.
- If the HV (High Voltage) signal is input when the microcontroller power supply is off (not fixed at 0 V), since power is supplied from the pins, incomplete operations may be executed.
- If the HV (High Voltage) input is input after power-on, since power is supplied from the pins, the voltage of power supply may not be sufficient to enable a power-on reset.
- Do not leave the HV (High Voltage) input pin unconnected.
- Example of a recommended circuit:

Input/Output equivalent circuit

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.
13.2 Recommended Operating Conditions
$\left(\mathrm{V}_{\mathrm{SS}}=0.0 \mathrm{~V}\right)$

Parameter	Symbol	Value		Unit	Remarks	
		Min	Max			
Power supply voltage	V_{CC}	$2.4 * 1 * 2$	5.5*1	V	In normal operation	Other than on-chip debug mode
		2.3	5.5		Hold condition in stop mode	
		2.9	5.5		In normal operation	On-chip debug mode
		2.3	5.5		Hold condition in stop mode	
Smoothing capacitor	C_{S}	0.022	1	$\mu \mathrm{F}$	*3	
Operating temperature	$\mathrm{T}_{\text {A }}$	-40	+85	${ }^{\circ} \mathrm{C}$	Other than on-chip debug mode	
		+5	+35		On-chip debug mode	

*1: The value varies depending on the operating frequency, the machine clock and the analog guaranteed range.
*2: The value is 2.88 V when the low-voltage detection reset is used.
*3: Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. The bypass capacitor for the V_{CC} pin must have a capacitance larger than C_{S}. For the connection to a smoothing capacitor C_{S}, see the diagram below. To prevent the device from unintentionally entering an unknown mode due to noise, minimize the distance between the C pin and C_{S} and the distance between C_{S} and the V_{SS} pin when designing the layout of a printed circuit board.

DBG / RST / C pin connection diagram

*: Since the DBG pin becomes a communication pin in on-chip debug mode, set a pull-up resistor value suiting the input/output specifications of P12/DBG.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges.
Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

13.3 DC Characteristics

$\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min	Typ	Max		
" H " level input voltage	$\mathrm{V}_{\mathrm{IHI}}$	P04	*1	$0.7 \mathrm{~V}_{\mathrm{cc}}$	-	$\mathrm{V}_{\mathrm{cc}}+0.3$	V	When CMOS input level (hysteresis input) is selected
	$\mathrm{V}_{\text {IHS }}$	$\begin{aligned} & \text { P01 to P07, P12, } \\ & \text { PF0, PF1, } \\ & \text { PG1, PG2 } \end{aligned}$	*1	0.8 V cc	-	$\mathrm{V}_{\mathrm{CC}}+0.3$	V	Hysteresis input
	$\mathrm{V}_{\text {HHM }}$	PF2	-	$0.7 \mathrm{~V}_{\mathrm{CC}}$	-	10.5	V	Hysteresis input* ${ }^{\text {3 }}$
"L" level input voltage	VIL	P04	*1	$\mathrm{V}_{\text {ss }}-0.3$	-	$0.3 \mathrm{~V}_{\mathrm{CC}}$	V	When CMOS input level (hysteresis input) is selected
	$\mathrm{V}_{\text {ILS }}$	$\begin{aligned} & \text { P01 to P07, P12, } \\ & \text { PF0, PF1, } \\ & \text { PG1, PG2 } \end{aligned}$	*1	$\mathrm{V}_{\text {ss }}-0.3$	-	$0.2 \mathrm{~V}_{\mathrm{Cc}}$	V	Hysteresis input
	$\mathrm{V}_{\text {ILM }}$	PF2	-	$\mathrm{V}_{\mathrm{Ss}}-0.3$	-	$0.3 \mathrm{~V}_{\mathrm{CC}}$	V	Hysteresis input
Open-drain output application voltage	V_{D}	PF2, P12	-	$\mathrm{V}_{\text {ss }}-0.3$	-	$\mathrm{V}_{\text {ss }}+5.5$	V	
"H" level output voltage	$\mathrm{V}_{\text {OH1 }}$	Output pins other than P05, P06, P12, PF2	$\mathrm{l}_{\mathrm{OH}}=-4 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{cc}}-0.5$	-	-	V	
	$\mathrm{V}_{\mathrm{OH} 2}$	P05, P06	$\mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA}$	$\mathrm{V}_{\text {CC }-0.5}$	-	-	V	
"L" level output voltage	$\mathrm{V}_{\mathrm{OL} 1}$	Output pins other than P05, P06	$\mathrm{loL}=4 \mathrm{~mA}$	-	-	0.4	V	
	$\mathrm{V}_{\text {OL2 }}$	P05, P06	$\mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$	-	-	0.4	V	
Input leak current (Hi-Z output leak current)	l_{L}	All input pins	$0.0 \mathrm{~V}<\mathrm{V}_{1}<\mathrm{V}_{\mathrm{CC}}$	-5	-	+5	$\mu \mathrm{A}$	When pull-up resistance is disabled
Pull-up resistance	$\mathrm{R}_{\text {PULL }}$	$\begin{aligned} & \hline \text { P01 to P07, PG1, } \\ & \text { PG2 } \end{aligned}$	$\mathrm{V}_{1}=0 \mathrm{~V}$	25	50	100	k Ω	When pull-up resistance is enabled
Input capacitance	$\mathrm{Clin}_{\text {IN }}$	Other than V_{CC} and $V_{S S}$	$\mathrm{f}=1 \mathrm{MHz}$	-	5	15	pF	

(Continued)

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min	Typ	Max		
Powersupply current ${ }^{* 2}$	I_{cc}	V_{CC} (External clock operation)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \\ & \mathrm{~F}_{\mathrm{CH}}=32 \mathrm{MHz} \\ & \mathrm{~F}_{\mathrm{MP}}=16 \mathrm{MHz} \\ & \text { Main clock mode } \\ & \text { (divided by 2) } \end{aligned}$	-	13	17	mA	Flash memory product (except writing and erasing)
				-	33.5	39.5	mA	Flash memory product (at writing and erasing)
				-	15	21	mA	At A/D conversion
	$\mathrm{I}_{\mathrm{ccs}}$		$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \\ & \mathrm{~F}_{\mathrm{CH}}=32 \mathrm{MHz} \\ & \mathrm{~F}_{\mathrm{MP}}=16 \mathrm{MHz} \\ & \text { Main sleep mode } \\ & \text { (divided by 2) } \end{aligned}$	-	5.5	9	mA	
	$\mathrm{I}_{\mathrm{CCL}}$		$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \\ \mathrm{~F}_{\mathrm{CL}}=32 \mathrm{kHz} \\ \mathrm{~F}_{\mathrm{MPL}}=16 \mathrm{kHz} \\ \text { Subclock mode } \\ \text { (divided by } 2 \text {) } \\ \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{array}$	-	65	153	$\mu \mathrm{A}$	
	$\mathrm{I}_{\text {ccls }}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \\ & \mathrm{~F}_{\mathrm{CL}}=32 \mathrm{kHz} \\ & \mathrm{~F}_{\mathrm{MPL}}=16 \mathrm{kHz} \\ & \text { Subsleep mode } \\ & \text { (divided by 2) } \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	-	10	84	$\mu \mathrm{A}$	
	${ }^{\text {CCT }}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \\ & \mathrm{~F}_{\mathrm{CL}}=32 \mathrm{kHz} \end{aligned}$ Watch mode Main stop mode $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	5	30	$\mu \mathrm{A}$	
	$\mathrm{I}_{\text {CCMCR }}$	V_{CC}	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \\ & \mathrm{~F}_{\mathrm{CRH}}=10 \mathrm{MHz} \\ & \mathrm{~F}_{\mathrm{MP}}=10 \mathrm{MHz} \\ & \mathrm{Main} \mathrm{CR} \text { clock } \\ & \text { mode } \end{aligned}$	-	8.6	-	mA	
	$\mathrm{I}_{\text {CCsCR }}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ Sub-CR clock mode (divided by 2) $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	110	410	$\mu \mathrm{A}$	

(Continued)
(Continued)
$\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min	Typ	Max		
Powersupply current*2	$I_{\text {ccts }}$	$V_{C C}$ (External clock operation)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \\ & \mathrm{~F}_{\mathrm{CH}}=32 \mathrm{MHz} \end{aligned}$ Timebase timer mode $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	1.1	3	mA	
	$\mathrm{I}_{\mathrm{CCH}}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ Substop mode $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	3.5	22.5	$\mu \mathrm{A}$	Main stop mode for single clock selection
	$\mathrm{I}_{\text {LVD }}$	V_{CC}	Current consumption for low-voltage detection circuit only	-	37	54	$\mu \mathrm{A}$	
	$\mathrm{I}_{\mathrm{CRH}}$		Current consumption for the internal main CR oscillator	-	0.5	0.6	mA	
	$\mathrm{I}_{\text {CRL }}$		Current consumption for the internal sub-CR oscillator oscillating at 100 kHz	-	20	72	$\mu \mathrm{A}$	

*1: The input level of P04 can be switched between "CMOS input level" and "hysteresis input level". The input level selection register (ILSR) is used to switch between the two input levels.
*2: - The power supply current is determined by the external clock. When the low-voltage detection option is selected, the power-supply current will be the sum of adding the current consumption of the low-voltage detection circuit (ILVD) to one of the value from ICC to $\mathrm{I}_{\mathrm{CCH}}$. In addition, when both the low-voltage detection option and the CR oscillator are selected, the power supply current will be the sum of adding up the current consumption of the low-voltage detection circuit, the current consumption of the CR oscillators ($I_{C R H}, I_{\text {CRL }}$) and a specified value. In on-chip debug mode, the CR oscillator ($I_{C R H}$) and the low-voltage detection circuit are always enabled, and current consumption therefore increases accordingly.

- See "13.4. AC Characteristics: 13.4.1. Clock Timing" for F_{CH} and F_{CL}.
- See "13.4. AC Characteristics: 13.4.2. Source Clock/Machine Clock" for $F_{M P}$ and $F_{\text {MPL }}$.
*3: PF2 act as high voltage supply for the flash memory during program and erase. It can tolerate high voltage input. For details, see section "13.6. Flash Memory Program/Erase Characteristics".

13.4 AC Characteristics

13.4.1 Clock Timing

$$
\left(\mathrm{V}_{\mathrm{CC}}=2.4 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min	Typ	Max		
Clock frequency	F_{CH}	X0, X1	-	1	-	16.25	MHz	When the main oscillation circuit is used
		X0, HCLK1, HCLK2	X1 open	1	-	12	MHz	When the main external clock is used
		$\begin{aligned} & \text { X0, X1, } \\ & \text { HCLK1, } \\ & \text { HCLK22 } \end{aligned}$	-	1	-	32.5	MHz	
	$\mathrm{F}_{\text {CRH }}$	-	-	9.7	10	10.3	MHz	When the main CR clock is used$2.4 \mathrm{~V} \leq \mathrm{Vcc}<5.5 \mathrm{~V}\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 40^{\circ} \mathrm{C}\right)$
				7.76	8	8.24	MHz	
				0.97	1	1.03	MHz	
				9.5	10	10.5	MHz	When the main CR clock is used $2.4 \mathrm{~V} \leq \mathrm{Vcc}<5.5 \mathrm{~V}$ $\left(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}}<0^{\circ} \mathrm{C}, 40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}\right)$
				7.6	8	8.4	MHz	
				0.95	1	1.05	MHz	
	F_{CL}	X0A, X1A	-	-	32.768	-	kHz	When the sub oscillation circuit is used
				-	32.768	-	kHz	When the sub-external clock is used
	$\mathrm{F}_{\text {CRL }}$	-	-	50	100	200	kHz	When the sub-CR clock is used
Clock cycle time	${ }^{\text {thCYL }}$	X0, X1	-	61.5	-	1000	ns	When the main oscillation circuit is used
		X0, HCLK1, HCLK2	X1 open	83.4	-	1000	ns	When the external clock is used
		$\begin{aligned} & \text { X0, X1, } \\ & \text { HCLK1, } \\ & \text { HCLK2 } \end{aligned}$	-	30.8	-	1000	ns	
	tLCYL	X0A, X1A	-	-	30.5	-	$\mu \mathrm{s}$	When the subclock is used

(Continued)
(Continued)
$\left(\mathrm{V}_{\mathrm{CC}}=2.4 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min	Typ	Max		
Input clock pulse width	$\begin{aligned} & \mathrm{t}_{\mathrm{WH} 1} \\ & \mathrm{t}_{\mathrm{WL}} \end{aligned}$	X0, HCLK1, HCLK2	X1 open	33.4	-	-	ns	When the external clock is used, the duty ratio should range between 40% and 60\%.
		$\begin{aligned} & \text { X0, X1, } \\ & \text { HCLK1, } \\ & \text { HCLK2 } \end{aligned}$	-	12.4	-	-	ns	
	$\mathrm{t}_{\mathrm{WH} 2}$ $\mathrm{t}_{\mathrm{wL2}}$	XOA	-	-	15.2	-	$\mu \mathrm{s}$	
Input clock rise time and fall time	$\begin{aligned} & \mathrm{t}_{\mathrm{CR}} \\ & \mathrm{t}_{\mathrm{CF}} \end{aligned}$	X0, HCLK1, HCLK2	X1 open	-	-	5	ns	When the external clock is used
		$\begin{aligned} & \hline \mathrm{X0}, \mathrm{X1}, \\ & \text { HCLK1, } \\ & \text { HCLK2 } \end{aligned}$	-	-	-	5	ns	
CR oscillation start time	${ }^{\text {t }}$ CRHWK	-	-	-	-	80	$\mu \mathrm{s}$	When the main CR clock is used
	${ }^{\text {t CRLWK }}$	-	-	-	-	10	$\mu \mathrm{s}$	When the sub-CR clock is used

Figure of main clock input port external connection
When a crystal oscillator or When the external clock is used When the external clock is When the external clock is a ceramic oscillator is used
(X 1 is open)
used

used

Figure of subclock input port external connection

When a crystal oscillator or a ceramic oscillator is used

When the external clock is used

$$
\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin name	Value			Unit	Remarks
			Min	Typ	Max		
Source clock cycle time*1	$\mathrm{t}_{\text {SCLK }}$	-	61.5	-	2000	ns	When the main external clock is used Min : $\mathrm{F}_{\mathrm{CH}}=32.5 \mathrm{MHz}$, divided by 2 Max: $\mathrm{F}_{\mathrm{CH}}=1 \mathrm{MHz}$, divided by 2
			100	-	1000	ns	When the main CR clock is used Min: $\mathrm{F}_{\mathrm{CRH}}=10 \mathrm{MHz}$ Max: $F_{C R H}=1 \mathrm{MHz}$
			-	61	-	$\mu \mathrm{s}$	When the sub-CR clock is used $\mathrm{F}_{\mathrm{CL}}=32.768 \mathrm{kHz}$, divided by 2
			-	20	-	$\mu \mathrm{s}$	When the sub-oscillation clock is used $\mathrm{F}_{\mathrm{CRL}}=100 \mathrm{kHz}$, divided by 2
Source clock frequency	F_{SP}	-	0.5	-	16.25	MHz	When the main oscillation clock is used
			1	-	10	MHz	When the main CR clock is used
	$\mathrm{F}_{\text {SPL }}$		-	16.384	-	kHz	When the sub-oscillation clock is used
			-	50	-	kHz	When the sub-CR clock is used $F_{C R L}=100 \mathrm{kHz}$, divided by 2
Machine clock cycle time*2 (minimum instruction execution time)	$\mathrm{t}_{\text {MCLK }}$	-	61.5	-	32000	ns	When the main oscillation clock is used Min: $F_{S P}=16.25 \mathrm{MHz}$, no division Max: $F_{S P}=0.5 \mathrm{MHz}$, divided by 16
			100	-	16000	ns	When the main CR clock is used Min: $\mathrm{F}_{\mathrm{SP}}=10 \mathrm{MHz}$ Max: $\mathrm{F}_{\mathrm{SP}}=1 \mathrm{MHz}$, divided by 16
			61	-	976.5	$\mu \mathrm{s}$	When the sub-oscillation clock is used Min: $F_{\text {SPL }}=16.384 \mathrm{kHz}$, no division Max: $F_{\text {SPL }}=16.384 \mathrm{kHz}$, divided by 16
			20	-	320	$\mu \mathrm{s}$	When the sub-CR clock is used Min: $\mathrm{F}_{\text {SPL }}=50 \mathrm{kHz}$, no division Max: $\mathrm{F}_{\mathrm{SPL}}=50 \mathrm{kHz}$, divided by 16
Machine clock frequency	F_{MP}	-	0.031	-	16.25	MHz	When the main oscillation clock is used
			0.0625	-	10	MHz	When the main CR clock is used
	$\mathrm{F}_{\text {MPL }}$		1.024	-	16.384	kHz	When the sub-oscillation clock is used
			3.125	-	50	kHz	When the sub-CR clock is used $\mathrm{F}_{\mathrm{CRL}}=100 \mathrm{kHz}$

*1: This is the clock before it is divided according to the division ratio set by the machine clock division ratio selection bits
(SYCC : DIV1 and DIV0). This source clock is divided to become a machine clock according to the division ratio set by the machine clock division ratio selection bits (SYCC : DIV1 and DIV0) . In addition, a source clock can be selected from the following.

- Main clock divided by 2
- Main CR clock
- Subclock divided by 2
- Sub-CR clock divided by 2
*2: This is the operating clock of the microcontroller. A machine clock can be selected from the following.
- Source clock (no division)
- Source clock divided by 4
- Source clock divided by 8
- Source clock divided by 16

Schematic diagram of the clock generation block

Operating voltage - Operating frequency (When $T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$) MB95220H (without the on-chip debug function)

Operating voltage - Operating frequency (When $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$) MB95220H (with the on-chip debug function)

13.4.3 External Reset

$$
\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Value		Unit	Remarks
		$2 \mathrm{t}_{\text {MCLK }}{ }^{* 1}$	-		In normal operation
RST "L" level pulse width	$\mathrm{t}_{\text {RSTL }}$	Oscillation time of the oscillator*2 +100	-	$\mu \mathrm{s}$	In stop mode, subclock mode, sub-sleep mode, watch mode, and power on
		100	-	$\mu \mathrm{s}$	In timebase timer mode

*1: See "13.4.2. Source Clock/Machine Clock" for $\mathrm{t}_{\text {MCLK }}$.
*2: The oscillation time of an oscillator is the time for it to reach 90% of its amplitude. The crystal oscillator has an oscillation time of between several ms and tens of ms . The ceramic oscillator has an oscillation time of between hundreds of $\mu \mathrm{s}$ and several ms . The external clock has an oscillation time of 0 ms . The CR oscillator clock has an oscillation time of between several $\mu \mathrm{s}$ and several ms.

In normal operation

$\overline{\text { RST }}$

In stop mode, subclock mode, subsleep mode, watch mode and power-on

13.4.4 Power-on Reset

$$
\left(\mathrm{V}_{\mathrm{SS}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Condition	Value		Unit	Remarks
			Min	Max		
Power supply rising time	t_{R}	-	-		ms	
Power supply cutoff time	$\mathrm{t}_{\mathrm{OFF}}$	-	1	-	ms	Wait time until power-on

Note: A sudden change of power supply voltage may activate the power-on reset function. When changing the power supply voltage during the operation, set the slope of rising to a value below within $30 \mathrm{mV} / \mathrm{ms}$ as shown below.

13.4.5 Peripheral Input Timing

$$
\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin name	Value		Unit
			Min	Max	
Peripheral input "H" pulse width	$t_{\text {ILIH }}$	INT02 to INT07, EC0	$2 \mathrm{t}_{\text {MCLK }}{ }^{*}$	-	ns
Peripheral input "L" pulse width	$\mathrm{t}_{\text {IHIL }}$		2 tMCLK *	-	ns

* See "13.4.2. Source Clock/Machine Clock" for tMCLK.

13.4.6 LIN-UART Timing (Available only in MB95F222H/F222K/F223H/F223K)

Sampling is executed at the rising edge of the sampling clock ${ }^{* 1}$, and serial clock delay is disabled*2. (ESCR register:SCES bit $=0$, ECCR register:SCDE bit $=0$)

$$
\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{AV}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{SS}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin name	Condition	Value		Unit
				Min	Max	
Serial clock cycle time	${ }^{\text {tSCYC }}$	SCK	Internal clock operation output pin:$\mathrm{C}_{\mathrm{L}}=80 \mathrm{pF}+1 \mathrm{TTL}$	$5 \mathrm{t}_{\text {MCLK }}{ }^{* 3}$	-	ns
SCK $\downarrow \rightarrow$ SOT delay time	$\mathrm{t}_{\text {SLOVI }}$	SCK, SOT		-95	+95	ns
Valid SIN \rightarrow SCK \uparrow	$\mathrm{t}_{\text {IVSHI }}$	SCK, SIN		$\mathrm{t}_{\text {MCLK }}{ }^{* 3}+190$	-	ns
SCK $\uparrow \rightarrow$ valid SIN hold time	$\mathrm{t}_{\text {SHIXI }}$	SCK, SIN		0	-	ns
Serial clock "L" pulse width	${ }^{\text {tSLSH }}$	SCK	External clock operation output pin:$\mathrm{C}_{\mathrm{L}}=80 \mathrm{pF}+1 \mathrm{TTL}$	$3 \mathrm{t}_{\text {MCLK }}{ }^{* 3}-\mathrm{t}_{\mathrm{R}}$	-	ns
Serial clock "H" pulse width	$\mathrm{t}_{\text {SHSL }}$	SCK		$\mathrm{t}_{\text {MCLK }}{ }^{* 3+95}$	-	ns
SCK $\downarrow \rightarrow$ SOT delay time	tslove	SCK, SOT		-	$2 \mathrm{t}_{\text {MCLK }}{ }^{* 3}+95$	ns
Valid SIN \rightarrow SCK \uparrow	$\mathrm{t}_{\text {IVSHE }}$	SCK, SIN		190	-	ns
SCK $\uparrow \rightarrow$ valid SIN hold time	$\mathrm{t}_{\text {SHIXE }}$	SCK, SIN		$\mathrm{t}_{\text {MCLK }}{ }^{* 3}+95$	-	ns
SCK fall time	t_{F}	SCK		-	10	ns
SCK rise time	t_{R}	SCK		-	10	ns

*1: There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock.
*2: The serial clock delay function is a function used to delay the output signal of the serial clock for half the clock.
*3: See "13.4.2. Source Clock/Machine Clock" for $\mathrm{t}_{\text {MCLK }}$.

Internal shift clock mode

External shift clock mode

Sampling is executed at the falling edge of the sampling clock*1, and serial clock delay is disabled*2.
(ESCR register:SCES bit = 1, ECCR register:SCDE bit = 0)
$\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value		Unit
				Min	Max	
Serial clock cycle time	$\mathrm{t}_{\text {SCYC }}$	SCK	Internal clock operation output pin:$C_{L}=80 \mathrm{pF}+1 \mathrm{TTL}$	$5 \mathrm{t}_{\text {MCLK }}{ }^{* 3}$	-	ns
SCK $\uparrow \rightarrow$ SOT delay time	${ }_{\text {t }}^{\text {SHOVI }}$	SCK, SOT		-95	+95	ns
Valid SIN \rightarrow SCK \downarrow	tivSLI	SCK, SIN		$\mathrm{t}_{\text {MCLK }}{ }^{* 3}+190$	-	ns
SCK $\downarrow \rightarrow$ valid SIN hold time	$\mathrm{t}_{\text {SLIXI }}$	SCK, SIN		0	-	ns
Serial clock "H" pulse width	$\mathrm{t}_{\text {SHSL }}$	SCK	External clock operation output pin:$\mathrm{C}_{\mathrm{L}}=80 \mathrm{pF}+1 \mathrm{TTL}$	$3 \mathrm{t}_{\text {MCLK }}{ }^{* 3-\mathrm{t}_{\mathrm{R}}}$	-	ns
Serial clock "L" pulse width	${ }^{\text {tsLSH }}$	SCK		$\mathrm{t}_{\text {MCLK }}{ }^{* 3}+95$	-	ns
SCK $\uparrow \rightarrow$ SOT delay time	$\mathrm{t}_{\text {SHOVE }}$	SCK, SOT		-	$2 \mathrm{t}_{\text {MCLK }}{ }^{* 3}+95$	ns
Valid SIN \rightarrow SCK \downarrow	$\mathrm{t}_{\text {IVSLE }}$	SCK, SIN		190	-	ns
SCK $\downarrow \rightarrow$ valid SIN hold time	${ }^{\text {tSLIXE }}$	SCK, SIN		$\mathrm{t}_{\text {MCLK }}{ }^{* 3}+95$	-	ns
SCK fall time	t_{F}	SCK		-	10	ns
SCK rise time	t_{R}	SCK		-	10	ns

*1: There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock.
*2: The serial clock delay function is a function used to delay the output signal of the serial clock for half the clock.
*3: See "13.4.2. Source Clock/Machine Clock" for $\mathrm{t}_{\text {MCLK }}$.

Internal shift clock mode

External shift clock mode

Sampling is executed at the rising edge of the sampling clock ${ }^{* 1}$, and serial clock delay is enabled ${ }^{* 2}$.
(ESCR register:SCES bit $=0$, ECCR register:SCDE bit = 1)

$$
\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin name	Condition	Value		Unit
				Min	Max	
Serial clock cycle time	${ }^{\text {tsCyc }}$	SCK	Internal clock operation output pin:$\mathrm{C}_{\mathrm{L}}=80 \mathrm{pF}+1 \mathrm{TTL}$	$5 \mathrm{t}_{\text {MCLK }}{ }^{* 3}$	-	ns
SCK $\uparrow \rightarrow$ SOT delay time	$\mathrm{t}_{\text {SHOVI }}$	SCK, SOT		-95	+95	ns
Valid SIN \rightarrow SCK \downarrow	tivSLI	SCK, SIN		$\mathrm{t}_{\text {MCLK }}{ }^{* 3}+190$	-	ns
SCK $\downarrow \rightarrow$ valid SIN hold time	$\mathrm{t}_{\text {SLIXI }}$	SCK, SIN		0	-	ns
SOT \rightarrow SCK \downarrow delay time	${ }_{\text {t }}$ SovLI	SCK, SOT		-	$4 \mathrm{t}_{\text {MCLK }}{ }^{* 3}$	ns

*1: There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock.
*2: The serial clock delay function is a function that delays the output signal of the serial clock for half clock.
*3: See "13.4.2. Source Clock/Machine Clock" for $\mathrm{t}_{\text {MCLK }}$.

Sampling is executed at the falling edge of the sampling clock*1, and serial clock delay is enabled*2.
(ESCR register:SCES bit = 1, ECCR register:SCDE bit = 1)

$$
\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin name	Condition	Value		Unit
				Min	Max	
Serial clock cycle time	$\mathrm{t}_{\text {SCYC }}$	SCK	Internal clock operation output pin: $\mathrm{C}_{\mathrm{L}}=80 \mathrm{pF}+1 \mathrm{TTL}$	$5 \mathrm{t}_{\text {MCLK }}{ }^{* 3}$	-	ns
SCK $\downarrow \rightarrow$ SOT delay time	${ }^{\text {t SLOVI }}$	SCK, SOT		-95	+95	ns
Valid SIN \rightarrow SCK \uparrow	$\mathrm{t}_{\text {IVSHI }}$	SCK, SIN		$\mathrm{t}_{\text {MCLK }}{ }^{* 3}+190$	-	ns
SCK $\uparrow \rightarrow$ valid SIN hold time	$\mathrm{t}_{\text {SHIXI }}$	SCK, SIN		0	-	ns
SOT \rightarrow SCK \uparrow delay time	$\mathrm{t}_{\text {SOVHI }}$	SCK, SOT		-	$4 \mathrm{t}_{\text {MCLK }}{ }^{* 3}$	ns

*1:There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock.
*2: The serial clock delay function is a function that delays the output signal of the serial clock for half clock.
*3: See "13.4.2. Source Clock/Machine Clock" for $\mathrm{t}_{\text {MCLK }}$.

13.4.7 Low-voltage Detection
$\left(\mathrm{V}_{\mathrm{SS}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Value			Unit	Remarks
		Min	Typ	Max		
Release voltage	$\mathrm{V}_{\text {DL+ }}$	2.52	2.7	2.88	V	At power supply rise
Detection voltage	$\mathrm{V}_{\text {DL- }}$	2.42	2.6	2.78	V	At power supply fall
Hysteresis width	$\mathrm{V}_{\mathrm{HYS}}$	70	100	-	mV	
Power supply start voltage	$V_{\text {off }}$	-	-	2.3	V	
Power supply end voltage	$\mathrm{V}_{\text {on }}$	4.9	-	-	V	
Power supply voltage change time (at power supply rise)	t_{r}	1	-	-	$\mu \mathrm{s}$	Slope of power supply that the reset release signal generates
		-	3000	-	$\mu \mathrm{s}$	Slope of power supply that the reset release signal generates within the rating ($\mathrm{V}_{\mathrm{DL}+}$)
Power supply voltage change time (at power supply fall)	t_{f}	300	-	-	$\mu \mathrm{s}$	Slope of power supply that the reset detection signal generates
		-	300	-	$\mu \mathrm{s}$	Slope of power supply that the reset detection signal generates within the rating (V_{DL})
Reset release delay time	$\mathrm{t}_{\mathrm{d} 1}$	-	-	300	$\mu \mathrm{s}$	
Reset detection delay time	$\mathrm{t}_{\mathrm{d} 2}$	-	-	20	$\mu \mathrm{s}$	

13.5 A/D Converter

13.5.1 A/D Converter Electrical Characteristics
$\left(\mathrm{V}_{\mathrm{CC}}=4.0 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Value			Unit	Remarks
		Min	Typ	Max		
Resolution	-	-	-	10	bit	
Total error		-3	-	+3	LSB	
Linearity error		-2.5	-	+2.5	LSB	
Differential linear error		-1.9	-	+1.9	LSB	
Zero transition voltage	$\mathrm{V}_{\text {OT }}$	$\mathrm{V}_{\text {SS }}-1.5 \mathrm{LSB}$	$\mathrm{V}_{\mathrm{SS}}+0.5 \mathrm{LSB}$	$\mathrm{V}_{\mathrm{SS}}+2.5 \mathrm{LSB}$	V	
Full-scale transition voltage	$\mathrm{V}_{\text {FST }}$	$\mathrm{V}_{\text {CC }}-4.5 \mathrm{LSB}$	$\mathrm{V}_{\mathrm{CC}}-2$ LSB	$\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{LSB}$	V	
Compare time	-	0.9	-	16500	$\mu \mathrm{s}$	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$
		1.8	-	16500	$\mu \mathrm{s}$	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<4.5 \mathrm{~V}$
Sampling time	-	0.6	-	∞	$\mu \mathrm{s}$	$\begin{aligned} & 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{Cc}} \leq 5.5 \mathrm{~V} \text {, with } \\ & \text { external impedance } \\ & <5.4 \mathrm{k} \Omega \end{aligned}$
		1.2	-	∞	$\mu \mathrm{s}$	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 4.5 \mathrm{~V}$, with external impedance $<2.4 \mathrm{k} \Omega$
Analog input current	$\mathrm{I}_{\text {AIN }}$	-0.3	-	+0.3	$\mu \mathrm{A}$	
Analog input voltage	$\mathrm{V}_{\text {AIN }}$	$\mathrm{V}_{S S}$	-	V_{CC}	V	

13.5.2 Notes on Using the A/D Converter

External impedance of analog input and its sampling time

The A/D converter has a sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the capacitor of the internal sample and hold circuit is insufficient, adversely affecting A/D conversion precision. Therefore, to satisfy the A/D conversion precision standard, considering the relationship between the external impedance and minimum sampling time, either adjust the register value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value. In addition, if sufficient sampling time cannot be secured, connect a capacitor of about $0.1 \mu \mathrm{~F}$ to the analog input pin.

Analog input equivalent circuit

Note: The values are reference values.

Relationship between external impedance and minimum sampling time

A/D conversion error

As $\left|\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{SS}}\right|$ decreases, the A / D conversion error increases proportionately.

13.5.3 Definitions of A / D Converter Terms

Resolution

It indicates the level of analog variation that can be distinguished by the A/D converter. When the number of bits is 10 , analog voltage can be divided into $2^{10}=1024$.

Linearity error (unit: LSB)

It indicates how much an actual conversion value deviates from the straight line connecting the zero transition point ("00 00000000 " $\leftarrow \rightarrow$ "00 00000001 ") of a device to the full-scale transition point ("11 1111 1111" $\leftarrow \rightarrow$ "11 1111 1110") of the same device.

Differential linear error (unit : LSB)

It indicates how much the input voltage required to change the output code by 1 LSB deviates from an ideal value.

Total error (unit: LSB)

It indicates the difference between an actual value and a theoretical value. The error can be caused by a zero transition error, a full-scale transition errors, a linearity error, a quantum error, or noise.

(Continued)

MB95220H Series
(Continued)

MB95220H Series
13.6 Flash Memory Program/Erase Characteristics

Parameter	Value			Unit	Remarks
	Min	Typ	Max		
Chip erase time	-	$1^{* 1}$	$15^{\star 2}$	s	00_{H} programming time prior to erasure is excluded.
Byte programming time	-	32	3600	$\mu \mathrm{~s}$	System-level overhead is excluded.
Erase/program voltage	9.5	10	10.5	V	The erase/program voltage must be applied to the PF2 pin in erase/program.
Current drawn on PF2	-	-	5.0	mA	Current consumption of PF2 pin during flash memory program/erase
Erase/program cycle	-	100000	-	cycle	
Power supply voltage at erase/program	3.0	-	5.5	V	
Flash memory data retention time	$20^{* 3}$	-	-	year	Average $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$

*1: $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 100000$ cycles
*2: $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, 100000$ cycles
*3: This value is converted from the result of a technology reliability assessment. (The value is converted from the result of a high temperature accelerated test by using the Arrhenius equation with the average temperature being $+85^{\circ} \mathrm{C}$).

14. Sample Electrical Characteristics

Power supply current•temperature

Iccls - Vcc

$\mathrm{T} A=+25^{\circ} \mathrm{C}$, FMPL=16 kHz (divided by 2)
Subsleep mode with the external clock operating

Icct - Vcc
TA $=+25^{\circ} \mathrm{C}$, FMPL=16 kHz (divided by 2)
Clock mode with the external clock operating

Icts - Vcc
$\mathrm{TA}=+25^{\circ} \mathrm{C}, \mathrm{FmP}=2,4,8,10,16 \mathrm{MHz}$ (divided by 2)
Timebase timer mode with the external clock operating

ICCLS - TA
Vcc=5.5 V, FMPL=16 kHz (divided by 2)
Subsleep mode with the external clock operating

Icct-TA
$\mathrm{V}=5.5 \mathrm{~V}$, FMPL=16 kHz (divided by 2) Clock mode with the external clock operating

Icts - TA
$\mathrm{V}=5.5 \mathrm{~V}, \mathrm{Fmp}=10$, 16 MHz (divided by 2)
Timebase timer mode with the external clock operating

(Continued)

Input voltage

Output voltage

| |
| :--- | :--- | :--- |

MB95220H Series

Pull-up

15. Mask Options

No.	Part Number	$\begin{aligned} & \text { MB95F222H } \\ & \text { MB95F223H } \end{aligned}$	MB95F222K MB95F223K
	Selectable/Fixed	Fixed	Fixed
1	Low-voltage detection reset - With low-voltage detection reset - Without low-voltage detection reset	Without low-voltage detection reset	With low-voltage detection reset
2	Reset - With dedicated reset input - Without dedicated reset input	With dedicated reset input	Without dedicated reset input

16. Ordering Information

Part Number	
MB95F222HPH-G-SNE2	Package
MB95F222KPH-G-SNE2	16-pin plastic DIP
MB95F223HPH-G-SNE2	(DIP-16P-M06)
MB95F223KPH-G-SNE2	
MB95F222HPF-G-SNE1	16-pin plastic SOP
MB95F222KPF-G-SNE1	(FPT-16P-M06)
MB95F223HPF-G-SNE1	
MB95F223KPF-G-SNE1	

17. Package Dimensions

16-pin plastic DIP	Lead pitch	Plastic mold
Sealing method	Pm	

(Continued)

MB95220H Series
(Continued)

16-pin plastic SOP	Lead pitch	1.27 mm
	Package width \times package length	$5.3 \times 10.15 \mathrm{~mm}$
	Lead shape	Gullwing
	Sealing method	Plastic mold
	Mounting height	2.25 mm MAX
	Weight	0.20 g
(FPT-16P-M06)	Code (Reference)	P-SOP16-5.3×10.15-1.27

16-pin plastic SOP
(FPT-16P-M06)

Note 1) *1: These dimensions include resin protrusion
Note 2) *2 : These dimensions do not include resin protrusion. Note 3) Pins width and pins thickness include plating thickness. Note 4) Pins width do not include tie bar cutting remainder.
© 2002-2010 FUJTSU SEMICONDUCTOR LIMITED F16015S-c-4-9

Dimensions in mm (inches) Note: The values in parentheses are reference values.

18. Major Changes

Spansion Publication Number: DS07-12626-3E

Page	Section	Change Results
21	Electrical Characteristics 1. Absolute Maximum Ratings	Changed the characteristics of Input voltage.
24	3. DC Characteristics	Corrected the maximum value of " H " level input voltage for PF2 pin. $\mathrm{V}_{\mathrm{CC}}+0.3 \rightarrow 10.5$
		Corrected the maximum value of Open-drain output application voltage. $0.2 \mathrm{Vcc} \rightarrow \mathrm{Vss}+5.5$
26		Added the footnote *3.
29	4. AC Characteristics (1) Clock Timing	Added a figure of HCLK1/HCLK2.
32	(2) Source Clock/Machine Clock	Corrected the graph of Operating voltage - Operating frequency (with the on-chip debug function). (Corrected the pitch)
33	(3) External Reset	Added and power on to the remarks column.
48	6. Flash Memory Program/ Erase Characteristics	Added the row of Current drawn on PF2.
		Corrected the minimum value of Power supply voltage at erase/program. $4.5 \rightarrow 3.0$

NOTE: Please see "Document History" about later revised information.

Document History

Document Title: MB95220H Series F²MC-8FX 8-bit Microcontroller Document Number: 002-07513					
Revision	ECN	Orig. of Change	Submission Date	Description of Change	
$* *$	-	AKIH	$07 / 26 / 2010$	Migrated to Cypress and assigned document number 002-07513. No change to document contents or format.	
${ }^{*} \mathrm{~A}$	5198887	AKIH	$03 / 31 / 2016$	Updated to Cypress format.	

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM ${ }^{\circledR}$ Cortex ${ }^{\circledR}$ Microcontrollers
Automotive
Clocks \& Buffers
Interface
Lighting \& Power Control
Memory
PSoC
Touch Sensing
USB Controllers
Wireless/RF
cypress.com/arm
cypress.com/automotive
cypress.com/clocks
cypress.com/interface
cypress.com/powerpsoc
cypress.com/memory
cypress.com/psoc
cypress.com/touch
cypress.com/usb
cypress.com/wireless

PSoC ${ }^{\circledR}$ Solutions

cypress.com/psoc
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP
Cypress Developer Community
Community | Forums | Blogs | Video | Training

Technical Support

cypress.com/support

[^0]
[^0]:

 is prohibited.

 products.
 States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

