

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lange of the applicatio customer's to unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the

2SA1381/KSA1381 PNP Epitaxial Silicon Transistor

Applications

- Audio, Voltage Amplifier and Current Source
- CRT Display, Video Output
- General Purpose Amplifier

Features

- High Voltage : V_{CEO}= -300V
- Low Reverse Transfer Capacitance : C_{re}= 2.3pF at V_{CB} = -30V
- Excellent Gain Linearity for low THD
- High Frequency: 150MHz
- Full thermal and electrical Spice models are available
- Complement to 2SC3503/KSC3503

Absolute Maximum Ratings* T_a = 25°C unless otherwise noted

Symbol	Parameter	Ratings	Units
BV _{CBO}	Collector-Base Voltage	-300	V
BV _{CEO}	Collector-Emitter Voltage	-300	V
BV _{EBO}	Emitter-Base Voltage	-5	V
I _C	Collector Current(DC)	-100	mA
I _{CP}	Collector Current(Pulse)	-200	mA
P _C	Total Device Dissipation, $T_C=25^{\circ}C$ $T_C=125^{\circ}C$	7 1.2	W W
T _J , T _{STG}	Junction and Storage Temperature	- 55 ~ +150	°C

* These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

Thermal Characteristics* T_{a=25°C} unless otherwise noted

Symbol	Parameter	Max.	Units
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	17.8	°C/W

* Device mounted on minimum pad size

h_{FE} Classification

Classification	С	D	E	F
h _{FE}	40 ~ 80	60 ~ 120	100 ~ 200	160 ~ 320

2SA1381/KSA1381 — PNP Epitaxial Silicon Transistor

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
BV _{CBO}	Collector-Base Breakdown Voltage	$I_{C} = -10\mu A, I_{E} = 0$	- 300			V
BV _{CEO}	Collecto- Emitter Breakdown Voltage	I _C = - 1mA, I _B = 0	- 300			V
BV _{EBO}	Emitter-Base Breakdown Voltage	$I_{E} = -10\mu A, I_{C} = 0$	- 5			V
I _{CBO}	Collector Cut-off Current	$V_{CB} = -200V, I_{E} = 0$			- 0.1	μA
I _{EBO}	Emitter Cut-off Current	$V_{EB} = -4V, I_{C} = 0$			- 0.1	μA
h _{FE}	DC Current Gain	V _{CE} = - 10V, I _C = - 10mA	40		320	
V _{CE} (sat)	Collector-Emitter Saturation Voltage	I _C = - 20mA, I _B = - 2mA			- 0.6	V
V _{BE} (sat)	Base-Emitter Saturation Voltage	I _C = - 20mA, I _B = - 2mA			- 1	V
f _T	Current Gain Bandwidth Product	V _{CE} = - 30V, I _C = - 10mA		150		MHz
C _{ob}	Output Capacitance	V _{CB} = - 30V, f = 1MHz		3.1		pF
C _{re}	Reverse Transfer Capacitance	V _{CB} = - 30V, f = 1MHz		2.3		pF

.

* Pulse Test: Pulse Width \leq 300µs, Duty Cycle \leq 2%

Ordering Information

Part Number*	Marking	Package	Packing Method	Remarks
2SA1381CSTU	2SA1381C	TO-126	TUBE	hFE1 C grade
2SA1381DSTU	2SA1381D	TO-126	TUBE	hFE1 D grade
2SA1381ESTU	2SA1381E	TO-126	TUBE	hFE1 E grade
2SA1381FSTU	2SA1381F	TO-126	TUBE	hFE1 F grade
KSA1381CSTU	A1381C	TO-126	TUBE	hFE1 C grade
KSA1381DSTU	A1381D	TO-126	TUBE	hFE1 D grade
KSA1381ESTU	A1381E	TO-126	TUBE	hFE1 E grade
KSA1381FSTU	A1381F	TO-126	TUBE	hFE1 F grade

* 1. Affix "-S-" means the standard TO126 Package (see package dimensions). If the affix is "-STS-" instead of "-S-", that mean the short-lead TO126 package. 2. Suffix "-TU" means the tube packing, The Suffix "TU" could be replaced to other suffix character as packing method.

Typical Characteristics = -140µA = -120µA I, [A], COLLECTOR CURRENT -16 collector current = -100µA = -80µA -12 = -60µA = -40µA = -20μA $I_{\mu} = 0\mu A$ -1 -2 -8 -10 $V_{ce}[V]$, COLLECTOR-EMITTER VOLTAGE Figure 1. Static Characteristic 11 $V_{CE} = -10V$

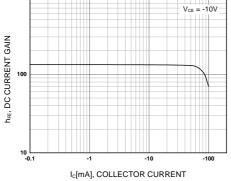


Figure 3. DC current Gain

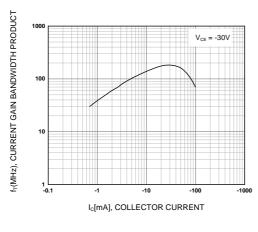


Figure 5. Current Gain Bandwidth Product

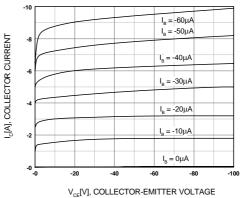


Figure 2. Static Characteristic

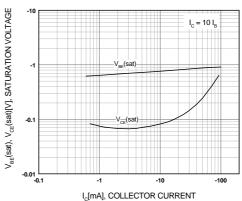
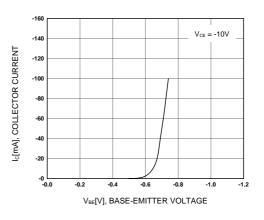



Figure 4. Base-Emitter Saturation Voltage Collector-Emitter Saturation Voltage

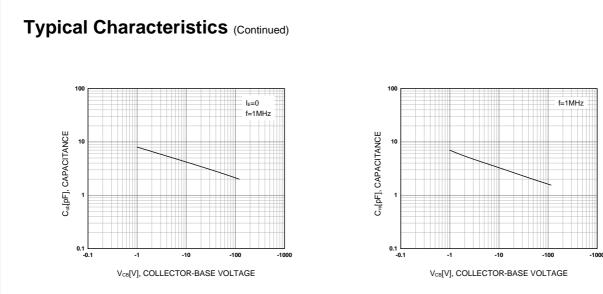
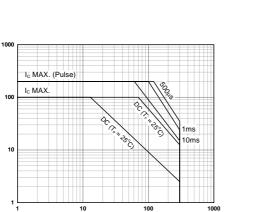



Figure 7. Collector Output Capacitance

V_{CE}[V], COLLECTOR-EMITTER VOLTAGE

Figure 8. Reverse Transfer Capacitance

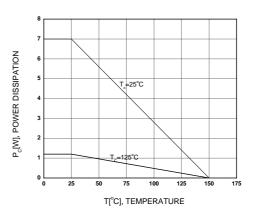
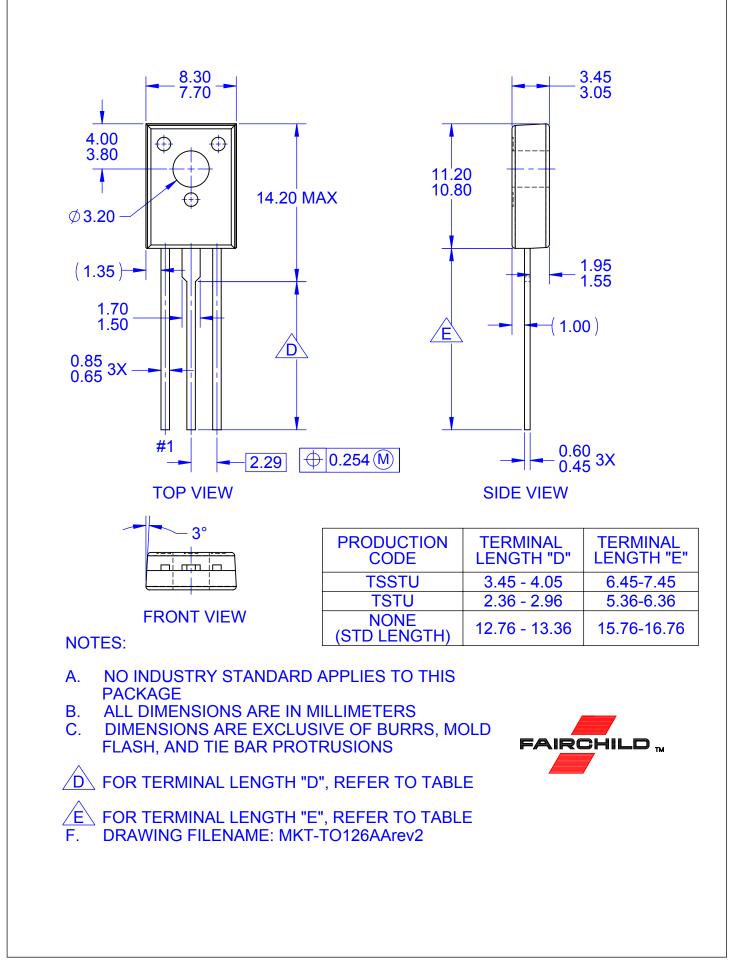



Figure 10. Power Derating

Ic[mA], COLLECTOR CURRENT

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC