July 2000

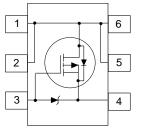
FDG314P

FAIRCHILD SEMICONDUCTOR

FDG314P Digital FET, P-Channel

General Description

This P-Channel enhancement mode field effect transistor is produced using Fairchild Semiconductor's proprietary, high cell density, DMOS technology. This very high density process is tailored to minimize onstate resistance at low gate drive conditions. This device is designed especially for battery power applications such as notebook computers and cellular phones. This device has excellent on-state resistance even at gate drive voltages as low as 2.5 volts.


Applications

- Power Management
- Load switch
- · Signal switch

Features

- -0.65 A, -25 V. $R_{DS(ON)} = 1.1 \Omega @ V_{GS} = -4.5 V$ $R_{DS(ON)} = 1.5 \Omega @ V_{GS} = -2.7 V.$
- Very low gate drive requirements allowing direct operation in 3V cirucuits (V_{GS(th)} <1.5 V).
- Gate-Source Zener for ESD ruggedness (>6 kV Human Body Model).
- Compact industry standard SC70-6 surface mount package.

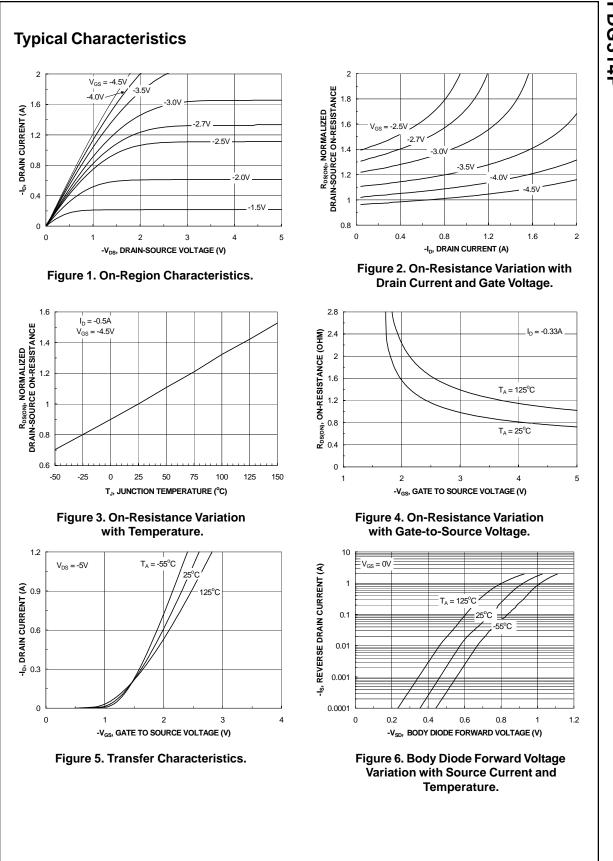
Absolute Maximum Ratings $T_A = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter			Ratings	Units	
V _{DSS}	Drain-Source Vo	e Voltage		-25	V	
V _{GSS}	Gate-Source Vo	oltage	±8	V		
ID	Drain Current	- Continuous	(Note 1a)	-0.65	A	
		- Pulsed		-1.8		
PD	Power Dissipati	on for Single Operation	(Note 1a)	0.75	W	
			(Note 1b)	0.48		
T _J , T _{stq}	Operating and S	Operating and Storage Junction Temperature Range			°C	
ESD	Electrostatic Discharge Rating MIL-STD-883D Human Body Model (100pf/1500 Ohm)			6.0	kV	
	l Character					
Therma	I Character	istics				
_{R₀JA} Packag	Thermal Resistance Marking a	ance, Junction-to-Ambien	ormation	260	1	
R _{eJA} Packag Device	Thermal Resista	ance, Junction-to-Ambien		260 Tape Width 8mm	°C/W Quantity 3000 units	

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Char:	acteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} = 0 V, I _D = -250 μA	-25			V
ΔBV _{DSS} ΔTJ	Breakdown Voltage Temperature Coefficient	$I_D = -250 \ \mu$ A, Referenced to 25°C		-19		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = -20 V, V _{GS} = 0 V			-1	μA
I _{GSS}	Gate-Body Leakage Current	V _{GS} = -8 V, V _{DS} = 0 V			-100	nA
On Chara	acteristics (Note 2)			•		
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = -250 \ \mu A$	-0.65	-0.72	-1.5	V
$rac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	I_D = -250 µA, Referenced to 25°C		2		mV/°C
R _{DS(on)}	Static Drain-Source On-Resistance	$ \begin{array}{l} V_{GS}=-4.5 \ V, \ I_{D}=-0.5 \ A \\ V_{GS}=-4.5 \ V, \ I_{D}=-0.5 \ A \ @ \ 125^{\circ}C \\ V_{GS}=-2.7 \ V, \ I_{D}=-0.25 \ A \end{array} $		0.77 1.08 1.06	1.1 1.8 1.5	Ω
I _{D(on)}	On-State Drain Current	$V_{GS} = -4.5 V, V_{DS} = -5 V$	-1			Α
g fs	Forward Transconductance	$V_{DS} = -4.5 \text{ V}, I_D = -0.5 \text{ A}$		0.9		S
Dynamic	Characteristics					
Ciss	Input Capacitance	$V_{DS} = -10 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$		63		pF
Coss	Output Capacitance	f = 1.0 MHz		34		pF
Crss	Reverse Transfer Capacitance	1		10		pF
Switchin	g Characteristics (Note 2)					
t _{d(on)}	Turn-On Delay Time	$V_{DD} = -6 V, I_D = -0.5 A,$		7	20	ns
tr	Turn-On Rise Time	V_{GS} = -4.5 V, R_{GEN} = 50 Ω		8	20	ns
t _{d(off)}	Turn-Off Delay Time			55	110	ns
t _f	Turn-Off Fall Time			35	70	ns
Qg	Total Gate Charge	$V_{DS} = -5 V, I_D = -0.25 A,$		1.1	1.5	nC
Q _{gs}	Gate-Source Charge	V _{GS} = -4.5 V		0.32		nC
Q _{gd}	Gate-Drain Charge			0.25		nC
Drain-So	urce Diode Characteristics a	and Maximum Ratings				
Is	Maximum Continuous Drain-Source				-0.42	Α
V _{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 \ V, \ I_S = -0.42 \ A$ (Note 2)		-0.85	-1.2	V

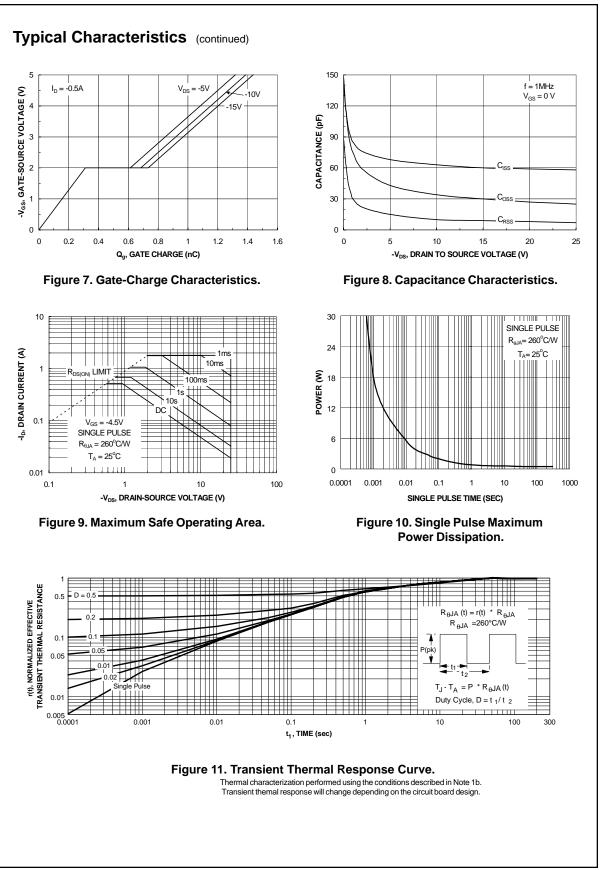
Notes:

1. $R_{\theta JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.


a) 170°C/W when mounted on a 1 in² pad of 2oz copper.

b) 260°C/W when mounted on a minimum mounting pad.

2. Pulse Test: Pulse Width ${\leq}\,300\,\mu\text{s},$ Duty Cycle ${\leq}\,2.0\%$


FDG314P Rev.C

FDG314P

FDG314P Rev.C

FDG314P

FDG314P Rev.C

FDG314P

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™ Bottomless™ CoolFET™ CROSSVOLT™ DOME™ E²CMOS[™] EnSigna™ FACT™ FACT Quiet Series™ **FAST[®]**

FASTr™ GlobalOptoisolator™ GTO™ HiSeC™ **ISOPLANAR™** MICROWIRE™ **OPTOLOGIC**[™] OPTOPLANAR™ POP™ PowerTrench[®]

QFET™ QS™ QT Optoelectronics[™] Quiet Series™ SuperSOT™-3 SuperSOT™-6 SuperSOT[™]-8 SyncFET™ TinyLogic™ UHC™

VCX™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
	•	Rev. F1